Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Nagarajan Vembu, ${ }^{\text {a }}$ Maruthai
Nallu, ${ }^{\text {a* }}$ Elinor C. Spencer ${ }^{\text {b }}$ and Judith A. K. Howard ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, and ${ }^{\text {b }}$ Department of Chemistry, Durham University, Durham DH1 3LE, England

Correspondence e-mail:
mnalv2003@yahoo.com

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.082$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 4-(3-nitrobenzenesulfonyloxy)benzoate

In the title molecule, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{7} \mathrm{~S}$, (I), there are weak C $\mathrm{H} \cdots \mathrm{O}$ interactions which generate rings of motifs $S(5), S(6)$, $R_{2}^{1}(5)$ and $R_{2}^{2}(7)$. The supramolecular aggregation is completed by the presence of $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields. An X-ray study of the title compound, (I), was undertaken in view of the biological importance of its analogues and also to compare its structural parameters with those of its precursor, 3-nitrobenzenesulfonyl chloride (Vembu, Nallu, Spencer \& Howard, 2003c) and its analogue phenyl 3-nitrobenzenesulfonate (Vembu, Nallu, Spencer \& Howard, 2003d).

(I)

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters in Table 1. Atoms C13, O6, O7 and C 14 deviate by -0.189 (3), -0.512 (3), 0.015 (3) and -0.229 (4) \AA, respectively, from the mean plane formed by the atoms C7-C12. The dihedral angle between the mean planes of the 3-nitrobenzene and benzoate phenyl rings is $58.4(5)^{\circ}$. This non-coplanar orientation is similar to that found in previous aromatic sulfonates (Vembu, Nallu, Garrison \& Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer \& Howard, 2003a,b), and is in contrast to the near coplanar

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids.

Received 14 July 2003
Accepted 21 July 2003
Online 31 July 2003

Figure 2
Diagram showing hydrogen bonds $1-7$ (the numbers relate to the sequence of entries in Table 2).

Figure 3
Diagram showing the intermolecular hydrogen bonds. Symmetry codes are given in Table 2.
orientation found in the 2,4-dinitrophenyl (Vembu, Nallu, Garrison \& Youngs, 2003a) and 4-methoxyphenyl (Vembu, Nallu, Garrison, Hindi \& Youngs, 2003) derivatives. The crystal structure of (I) is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2). The range of $\mathrm{H} \cdots \mathrm{O}$ distances found in (I) agrees with that found for weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds (Desiraju \& Steiner, 1999).

Figure 4
Packing of the molecule in the unit cell, viewed along the a axis, showing the network of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Figure 5
Packing of the molecule in the unit cell, viewed along the b axis, showing the $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$-stacking interactions.

As shown in Fig. 2, each of the $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1, \mathrm{C} 4-$ H4...O4, C6-H6…O2, C6-H6...O3, C9-H9...O6, C11$\mathrm{H} 11 \cdots \mathrm{O} 7$ and $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4$ interactions generates rings of graph-set motif $S(5)$ (Etter, 1990; Bernstein et al., 1995). The $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$ and $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 3$ interactions together constitute a pair of bifurcated donor bonds. The C12-
$\mathrm{H} 12 \cdots \mathrm{O} 4$ interaction generates a ring of graph-set motif $S(6)$. As can be seen in Fig. 3, the $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 3^{\text {iv }}$ and $\mathrm{C} 8-$ $\mathrm{H} 8 \cdots \mathrm{O} 4^{\text {iv }}$ interactions together generate a sulfonyl bifurcated motif of graph-set $R_{2}^{2}(7)$. The $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{v}}$ and $\mathrm{C} 11-$ $\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{v}}$ interactions constitute a pair of bifurcated acceptor bonds, generating a ring of graph-set $R_{2}^{1}(5)$. There are several other $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions which contribute to the supramolecular aggregation of the structure. In the crystal structure (Figs. 4 and 5), the inversion-related benzoate phenyl rings (symmetry code: $-x, 1-y, z$) are stacked with a typical centroid-centroid separation of $3.663 \AA$, suggesting weak $\pi-\pi$ interactions. The supramolecular aggregation is completed by the presence of a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (Table 2; Spek, 1998).

Experimental

3-Nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone $(4 \mathrm{ml})$ was added to methyl 4-hydroxybenzoate $(5 \mathrm{mmol})$ in NaOH solution ($2.5 \mathrm{ml}, 8 \%$) with constant shaking. The precipitated title compound (I) (2.6 mmol , yield 52%) was filtered and recrystallized from a 1:1 mixture of acetone and petroleum ether.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{7} \mathrm{~S}$
$M_{r}=337.30$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=11.125$ (2) A
$b=9.643$ (2) \AA
$c=13.236$ (3) A
$\beta=90.257(5)^{\circ}$
$V=1419.9(5) \AA^{3}$
$Z=4$

Data collection

Bruker Proteum M diffractometer ω scans
Absorption correction: none
9472 measured reflections
3150 independent reflections
2405 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.082$
$S=0.95$
3150 reflections
241 parameters

$$
\begin{aligned}
& D_{x}=1.578 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 928 \\
& \quad \text { reflections } \\
& \theta=3.2-27.1^{\circ} \\
& \mu=0.27 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.22 \times 0.13 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {int }}=0.030 \\
& \theta_{\max }=27.2^{\circ} \\
& h=-13 \rightarrow 14 \\
& k=-12 \rightarrow 9 \\
& l=-16 \rightarrow 15
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

S1-O3	$1.4163(12)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.474(2)$
$\mathrm{S} 1-\mathrm{O} 4$	$1.4206(13)$	$\mathrm{O} 5-\mathrm{C} 7$	$1.4219(19)$
$\mathrm{S} 1-\mathrm{O} 5$	$1.5894(12)$	$\mathrm{O} 6-\mathrm{C} 13$	$1.205(2)$
S1-C5	$1.7573(17)$	$\mathrm{O} 7-\mathrm{C} 13$	$1.338(2)$
N1-O2	$1.225(2)$	$\mathrm{O} 7-\mathrm{C} 14$	$1.447(2)$
N1-O1	$1.225(2)$		
O3-S1-O4	$120.90(8)$	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	$124.60(17)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 5$	$102.93(7)$	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	$117.83(16)$
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 5$	$109.67(7)$	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$117.57(17)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 5$	$109.59(8)$	$\mathrm{C} 7-\mathrm{O} 5-\mathrm{S} 1$	$120.64(9)$
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{C} 5$	$109.51(8)$	$\mathrm{C} 13-\mathrm{O} 7-\mathrm{C} 14$	$114.92(14)$
$\mathrm{O} 5-\mathrm{S} 1-\mathrm{C} 5$	$102.53(7)$		
C5-S1-O5-C7	$64.78(13)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.
$C g 2$ is the centroid of the C7-C12 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.93 (2)	2.438 (19)	2.717 (3)	97.2 (13)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}$	0.886 (19)	2.571 (18)	2.938 (2)	105.8 (13)
C6-H6 \cdots O2	0.920 (18)	2.422 (18)	2.702 (2)	97.6 (13)
C6-H6 . ${ }^{\text {O }} 3$	0.920 (18)	2.696 (18)	2.996 (2)	100.0 (13)
C9-H9...O6	0.946 (18)	2.543 (17)	2.816 (2)	96.8 (11)
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 7$	0.928 (16)	2.479 (16)	2.771 (2)	98.4 (11)
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4$	0.915 (18)	2.855 (16)	3.184 (2)	102.7 (12)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2{ }^{\text {i }}$	0.93 (2)	2.796 (19)	3.309 (3)	115.7 (14)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}{ }^{\text {ii }}$	0.886 (19)	2.596 (19)	3.454 (3)	163.2 (15)
C6-H6 . ${ }^{\text {O }} 7^{\text {iiii }}$	0.920 (18)	2.707 (19)	3.599 (2)	163.5 (15)
C9-H9 . $\mathrm{O}^{\text {iv }}$	0.946 (18)	2.401 (18)	3.198 (2)	141.6 (13)
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 4^{\text {iv }}$	0.932 (18)	2.998 (18)	3.870 (2)	156.4 (14)
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\text {v }}$	0.915 (18)	2.489 (18)	3.152 (2)	129.6 (13)
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\text {v }}$	0.928 (16)	2.805 (16)	3.324 (2)	116.5 (11)
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 4^{\text {vi }}$	0.98 (2)	2.74 (2)	3.712 (2)	173.3 (15)
$\mathrm{C} 14-\mathrm{H} 14 B \cdots \mathrm{O} 5^{\text {vii }}$	0.953 (19)	2.67 (2)	3.528 (2)	149.7 (15)
$\mathrm{C} 14-\mathrm{H} 14 B \cdots \mathrm{O}{ }^{\text {viii }}$	0.953 (19)	2.839 (19)	3.497 (2)	127.1 (13)
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{C} \cdots \mathrm{O}^{\text {ix }}$	0.96 (2)	2.721 (19)	3.536 (2)	143.2 (15)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cg} 2^{\mathrm{x}}$	0.95 (2)	2.85	3.70	149

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x, y-1, z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (vi) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (vii) $x, 1+y, z$; (viii) $-x, 2-y,-z$; (ix) $-x, 1-y,-z$; (x) $1-x,-y,-z$.

All the H atoms were located from difference Fourier maps and their positional parameters were refined, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom). The $\mathrm{C}-\mathrm{H}$ bond lengths are 0.89 (2)-0.98 (2) \AA.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

NV thanks the University Grants Commission-SERO, Government of India, for the award of Faculty Improvement Programme Grant [TFTNBD097 dt., 07.07.99]. JAKH thanks the EPRSC for a Senior Research Fellowship. ECS thanks the EPRSC for support.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Sheldrick, G. M. (1998). SHELXTL. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.
Vembu, N., Nallu, M., Garrison, J., Hindi, K. \& Youngs, W. J. (2003). Acta Cryst. E59, o830-o832.
Vembu, N., Nallu, M., Garrison, J. \& Youngs, W. J. (2003a). Acta Cryst. E59, o378-o380.
Vembu, N., Nallu, M., Garrison, J. \& Youngs, W. J. (2003b). Acta Cryst. E59, o503-o505.
Vembu, N., Nallu, M., Garrison, J. \& Youngs, W. J. (2003c). Acta Cryst. E59, o776-0779.
Vembu, N., Nallu, M., Garrison, J. \& Youngs, W. J. (2003d). Acta Cryst. E59, o936-o938.
Vembu, N., Nallu, M., Garrison, J. \& Youngs, W. J. (2003e). Acta Cryst. E59, o1019-o1021.
Vembu, N., Nallu, M., Spencer, E. C. \& Howard, J. A. K. (2003a). Acta Cryst. E59, o1009-o1011.

organic papers

Vembu, N., Nallu, M., Spencer, E. C. \& Howard, J. A. K. (2003b). Acta Cryst. E59, o1033-o1035.
Vembu, N., Nallu, M., Spencer, E. C. \& Howard, J. A. K. (2003c). Acta Cryst. E59, o1036-o1038.

Vembu, N., Nallu, M., Spencer, E. C. \& Howard, J. A. K. (2003d). Acta Cryst. E59, o1213-o1215.
Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. \& Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1-7.

