organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

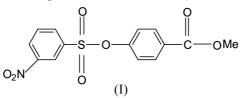
Nagarajan Vembu,^a Maruthai Nallu,^a* Elinor C. Spencer^b and Judith A. K. Howard^b

^aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, and ^bDepartment of Chemistry, Durham University, Durham DH1 3LE, England

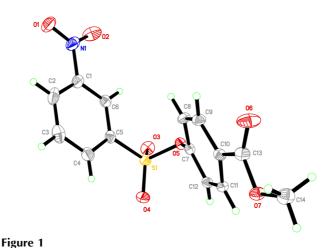
Correspondence e-mail: mnalv2003@yahoo.com

Key indicators

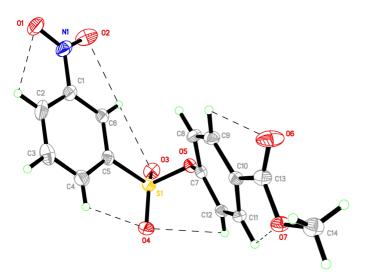
Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.036 wR factor = 0.082 Data-to-parameter ratio = 13.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

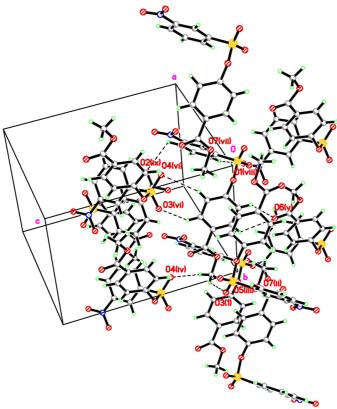
Methyl 4-(3-nitrobenzenesulfonyloxy)benzoate


In the title molecule, $C_{14}H_{11}NO_7S$, (I), there are weak C– H···O interactions which generate rings of motifs S(5), S(6), $R_2^1(5)$ and $R_2^2(7)$. The supramolecular aggregation is completed by the presence of C–H··· π and π - π interactions. Received 14 July 2003 Accepted 21 July 2003 Online 31 July 2003

Comment


Aromatic sulfonates are used in monitoring the merging of lipids (Yachi *et al.*, 1989) and in many other fields. An X-ray study of the title compound, (I), was undertaken in view of the biological importance of its analogues and also to compare its structural parameters with those of its precursor, 3-nitrobenzenesulfonyl chloride (Vembu, Nallu, Spencer & Howard, 2003*c*) and its analogue phenyl 3-nitrobenzenesulfonate (Vembu, Nallu, Spencer & Howard, 2003*d*).

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters in Table 1. Atoms C13, O6, O7 and C14 deviate by -0.189 (3), -0.512 (3), 0.015 (3) and -0.229 (4) Å, respectively, from the mean plane formed by the atoms C7–C12. The dihedral angle between the mean planes of the 3-nitrobenzene and benzoate phenyl rings is 58.4 (5)°. This non-coplanar orientation is similar to that found in previous aromatic sulfonates (Vembu, Nallu, Garrison & Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer & Howard, 2003a,b), and is in contrast to the near coplanar



© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved The molecular structure of (I), showing 50% probability displacement ellipsoids.

Figure 2

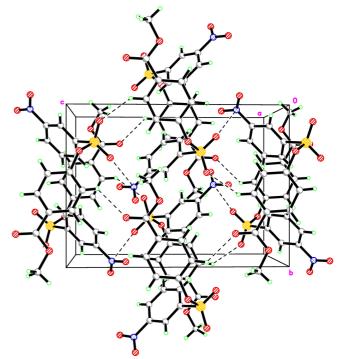
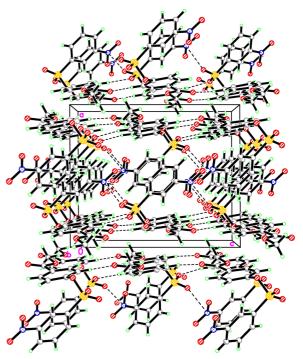

Diagram showing hydrogen bonds 1–7 (the numbers relate to the sequence of entries in Table 2).

Figure 3


Diagram showing the intermolecular hydrogen bonds. Symmetry codes are given in Table 2.

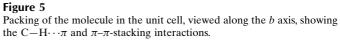

orientation found in the 2,4-dinitrophenyl (Vembu, Nallu, Garrison & Youngs, 2003*a*) and 4-methoxyphenyl (Vembu, Nallu, Garrison, Hindi & Youngs, 2003) derivatives. The crystal structure of (I) is stabilized by weak $C-H\cdots O$ interactions (Table 2). The range of $H\cdots O$ distances found in (I) agrees with that found for weak $C-H\cdots O$ bonds (Desiraju & Steiner, 1999).

Figure 4

Packing of the molecule in the unit cell, viewed along the *a* axis, showing the network of $C-H\cdots O$ interactions.

As shown in Fig. 2, each of the C2–H2···O1, C4– H4···O4, C6–H6···O2, C6–H6···O3, C9–H9···O6, C11– H11···O7 and C12–H12···O4 interactions generates rings of graph-set motif S(5) (Etter, 1990; Bernstein *et al.*, 1995). The C6–H6···O2 and C6–H6···O3 interactions together constitute a pair of bifurcated donor bonds. The C12– H12···O4 interaction generates a ring of graph-set motif S(6). As can be seen in Fig. 3, the $C9-H9\cdots O3^{iv}$ and C8-H8...O4^{iv} interactions together generate a sulfonyl bifurcated motif of graph-set $R_2^2(7)$. The C12-H12···O6^v and C11-H11...O6^v interactions constitute a pair of bifurcated acceptor bonds, generating a ring of graph-set $R_2^1(5)$. There are several other $C-H \cdots O$ interactions which contribute to the supramolecular aggregation of the structure. In the crystal structure (Figs. 4 and 5), the inversion-related benzoate phenyl rings (symmetry code: -x, 1 - y, z) are stacked with a typical centroid–centroid separation of 3.663 Å, suggesting weak π – π interactions. The supramolecular aggregation is completed by the presence of a C–H··· π interaction (Table 2; Spek, 1998).

Experimental

3-Nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone (4 ml) was added to methyl 4-hydroxybenzoate (5 mmol) in NaOH solution (2.5 ml, 8%) with constant shaking. The precipitated title compound (I) (2.6 mmol, yield 52%) was filtered and recrystallized from a 1:1 mixture of acetone and petroleum ether.

Crystal data

C ₁₄ H ₁₁ NO ₇ S	$D_x = 1.578 \text{ Mg m}^{-3}$
$M_r = 337.30$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 928
a = 11.125 (2) Å	reflections
b = 9.643 (2) Å	$\theta = 3.2-27.1^{\circ}$
c = 13.236(3) Å	$\mu = 0.27 \text{ mm}^{-1}$
$\beta = 90.257 \ (5)^{\circ}$	T = 120 (2) K
$V = 1419.9 (5) \text{ Å}^3$	Block, colourless
Z = 4	$0.22 \times 0.13 \times 0.12 \text{ mm}$
Data collection	

Data collection

Bruker Proteum M diffractometer	$R_{\rm int} = 0.030$
ω scans	$\theta_{\rm max} = 27.2^{\circ}$
Absorption correction: none	$h = -13 \rightarrow 14$
9472 measured reflections	$k = -12 \rightarrow 9$
3150 independent reflections	$l = -16 \rightarrow 15$
2405 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Only coordinates of H atoms
$R[F^2 > 2\sigma(F^2)] = 0.036$	refined
$wR(F^2) = 0.082$	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2]$
S = 0.95	where $P = (F_o^2 + 2F_c^2)/3$
3150 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
241 parameters	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S1-O3	1.4163 (12)	N1-C1	1.474 (2)
S1-O4	1.4206 (13)	O5-C7	1.4219 (19)
S1-O5	1.5894 (12)	O6-C13	1.205 (2)
S1-C5	1.7573 (17)	O7-C13	1.338 (2)
N1-O2	1.225 (2)	O7-C14	1.447 (2)
N1-O1	1.225 (2)		
O3-S1-O4	120.90 (8)	O2-N1-O1	124.60 (17)
O3-S1-O5	102.93 (7)	O2-N1-C1	117.83 (16)
O4-S1-O5	109.67 (7)	O1-N1-C1	117.57 (17)
O3-S1-C5	109.59 (8)	C7-O5-S1	120.64 (9)
O4-S1-C5	109.51 (8)	C13-O7-C14	114.92 (14)
O5-S1-C5	102.53 (7)		
C5-S1-O5-C7	64.78 (13)		

Table 2

Hydrogen-bonding geometry (Å, °).

Cg2 is the centroid of the C7-C12 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2-H2···O1	0.93 (2)	2.438 (19)	2.717 (3)	97.2 (13)
$C4-H4\cdots O4$	0.886 (19)	2.571 (18)	2.938 (2)	105.8 (13)
$C6-H6\cdots O2$	0.920 (18)	2.422 (18)	2.702 (2)	97.6 (13)
C6-H6···O3	0.920 (18)	2.696 (18)	2.996 (2)	100.0 (13)
C9−H9···O6	0.946 (18)	2.543 (17)	2.816 (2)	96.8 (11)
C11-H11···O7	0.928 (16)	2.479 (16)	2.771 (2)	98.4 (11)
C12-H12···O4	0.915 (18)	2.855 (16)	3.184 (2)	102.7 (12)
$C2-H2\cdots O2^i$	0.93 (2)	2.796 (19)	3.309 (3)	115.7 (14)
C4-H4···O1 ⁱⁱ	0.886 (19)	2.596 (19)	3.454 (3)	163.2 (15)
C6−H6···O7 ⁱⁱⁱ	0.920 (18)	2.707 (19)	3.599 (2)	163.5 (15)
C9−H9···O3 ^{iv}	0.946 (18)	2.401 (18)	3.198 (2)	141.6 (13)
C8−H8···O4 ^{iv}	0.932 (18)	2.998 (18)	3.870 (2)	156.4 (14)
$C12-H12\cdots O6^{v}$	0.915 (18)	2.489 (18)	3.152 (2)	129.6 (13)
$C11-H11\cdots O6^{v}$	0.928 (16)	2.805 (16)	3.324 (2)	116.5 (11)
$C14-H14A\cdots O4^{vi}$	0.98 (2)	2.74 (2)	3.712 (2)	173.3 (15)
$C14-H14B\cdots O5^{vii}$	0.953 (19)	2.67 (2)	3.528 (2)	149.7 (15)
$C14-H14B\cdots O7^{viii}$	0.953 (19)	2.839 (19)	3.497 (2)	127.1 (13)
$C14-H14C\cdots O3^{ix}$	0.96 (2)	2.721 (19)	3.536 (2)	143.2 (15)
$C3-H3\cdots Cg2^{x}$	0.95 (2)	2.85	3.70	149

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) x, y - 1, z; (iv) $x, \frac{1}{2} - y, \frac{1}{2} + z;$ (v) $x, \frac{3}{2} - y, z - \frac{1}{2};$ (vi) $x, \frac{3}{2} - y, \frac{1}{2} + z;$ (vii) x, 1 + y, z; (viii) -x, 2 - y, -z;(ix) -x, 1 - y, -z; (x) 1 - x, -y, -z.

All the H atoms were located from difference Fourier maps and their positional parameters were refined, with $U_{iso} = 1.2U_{eq}$ (parent atom). The C-H bond lengths are 0.89(2)-0.98(2) A.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

NV thanks the University Grants Commission-SERO, Government of India, for the award of Faculty Improvement Programme Grant [TFTNBD097 dt., 07.07.99]. JAKH thanks the EPRSC for a Senior Research Fellowship. ECS thanks the EPRSC for support.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Sheldrick, G. M. (1998). SHELXTL. University of Göttingen, Germany.
- Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.
- Vembu, N., Nallu, M., Garrison, J., Hindi, K. & Youngs, W. J. (2003). Acta Cryst. E59, 0830-0832.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, 0378-0380.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b). Acta Cryst. E59, 0503-0505
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c). Acta Cryst. E59, 0776-0779
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003d). Acta Cryst. E59, 0936-0938
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003e). Acta Cryst. E59, o1019-o1021.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003a). Acta Cryst. E59, o1009-o1011.

- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003b). Acta Cryst. E59, o1033–o1035.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003c). Acta Cryst. E59, o1036–o1038.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003d). Acta Cryst. E59, o1213–o1215.
- Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). *Biochim. Biophys. Acta*, **978**, 1–7.